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ABSTRACT Eleven spectral vegetation indices that emphasize foliar plant pigments were calculated
using airborne hyperspectral imagery and evaluated in 2004 and 2005 for their ability to detect
experimental plots of corn manually inoculated with Ostrinia nubilalis (Hübner) neonate larvae.
Manual inoculations were timed to simulate infestation of corn,ZeamaysL., by Þrst and second ßights
of adult O. nubilalis. The ability of spectral vegetation indices to detect O. nubilalis-inoculated plots
improved as the growing season progressed, with multiple spectral vegetation indices able to identify
infested plots in late August and early September. Our Þndings also indicate that for detecting O.
nubilalis-related plant stress in corn, spectral vegetation indices targeting carotenoid and anthocyanin
pigments arenotaseffectiveas those targetingchlorophyll.Analysisof imagedata suggests that feeding
and stem boring by O. nubilalis larvae may increase the rate of plant senescence causing detectable
differences in plant biomass and vigor when compared with control plots. Further, we identiÞed an
approximate time frame of 5Ð6 wk postinoculation, when spectral differences of manually inoculated
“second” generation O. nubilalis plots seem to peak.
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In 2006, Þeld corn, Zea mays L., grown for grain was
harvested from �28 million ha in the United States and
had a production value of �$33 billion (NASS
2007a,b). One of the most serious pests to corn pro-
duction in North America is the European corn borer,
Ostrinia nubilalis (Hübner). O. nubilalis is present
throughout the major corn-producing areas in the
United States, and it is capable of signiÞcantly reduc-
ing corn yield if not controlled (Ostlie et al. 1997).O.
nubilalis is capable of multiple generations per year
and in states like Iowa, the O. nubilalis ecotype is
bivoltine, with two distinct moth ßights each of
4Ð6-wk duration (Showers et al. 1975).

Transgenic corn expressing the insecticidal plant
incorporated protectant (PIP) Bacillus thuringiensis
(Bt) toxin was commercially released for O. nubilalis
control in 1996 and accounted for 40% of all U.S. corn

planted in 2006 (NASS 2007b). Transgenic corn hy-
brids currently available to growers contain multiple
traits (stacks), including Bt for corn borer [O. nubi-
lalis andDiatraea grandiosella (Dyar) control], Bt for
corn rootworm (Diabrotica virgifera virgifera Le-
Conte and Diabrotica barberi Smith & Lawrence)
control and herbicide tolerance. The U.S. Environ-
mental Protection Agency (U.S. EPA) registers all
PIP-expressing plants under the Federal Insecticide
Fungicide and Rodenticide Act and has determined
that crops containing insecticidal PIP traits are ben-
eÞcial to the public because of their potential to in-
crease yields with fewer applications of insecticides
(U.S. EPA 2001, Hunt et al. 2007). However, wide-
spread use of these crops increases risk of corn insect
pests developing resistance to Bt toxins. Loss of Bt trait
effectiveness due to insect resistance would increase
grower reliance on broad-spectrum chemical insecti-
cides that would, in turn, reduce environmental qual-
ity, and increase worker exposure to hazardous chem-
icals.

To minimize potential for development of insect
resistance to Bt corn, U.S. EPA mandates a high-dose/
refuge insect resistance management (IRM) strategy
for O. nubilalis. This management tactic is based on
the assumptions that plants are expressing Bt toxin at
levels sufÞcient to ensure that resistance is function-
ally recessive and any potentially resistantO. nubilalis
are most likely to mate with susceptible moths emerg-
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ing from non-Bt corn refuge (Tabashnik and Croft
1982; Alstad and Andow 1995, 1996; Roush 1997; Gould
1998). Depending on regional crop composition, U.S.
EPA requires that growers plant 20 to 50% of their
acreage to non-Bt corn hybrids to ensure adequate
production of susceptible moths. Additionally, U.S.
EPA requirements for PIP crop registration include
stewardship responsibilities, such as crop monitoring
for insect pest resistance. However, a national moni-
toring program designed to detect early development
ofO.nubilalis resistance to Bt corn by using traditional
sampling methods requires physically sampling corn-
Þelds on a geographic scale that would be logistically
impractical and expensive to implement.

Remote sensing provides a means of reliably locat-
ing corn plantings in the landscape and detecting crop
plant stress (Bauer et al. 1979, Bauer 1985, Curran
1985, Lichtenthaler et al. 1998, Zhao et al. 2005, Tilling
et al. 2007). It potentially could improve upon current
ground-based techniques for monitoring O. nubilalis
in corn by providing spatially explicit information on
the entire Þeld that can be integrated with existingO.
nubilalis sampling methodology. Additionally, the
ßexibility offered by numerous aerial and satellite
platforms allows remote-sensed imagery at different
spectral and spatial resolutions to be acquired nearly
simultaneously over time (Cihlar et al. 1991). Conse-
quently, the areal scalability and spatial context of
remote-sensed imagery would address many logistical
issues facing a national monitoring program for O.
nubilalis in Þeld corn. Imagery acquired by satellites at
regional scales would allow discrimination of corn
from other crops in the landscape, whereas higher
resolution airborne hyperspectral images would allow
evaluation of individual corn Þelds for hybrid type and
insect-related plant stress.

Hyperspectral sensors, sometimes referred to as im-
aging spectrometers, provide a high degree of spectral
resolution compared with multispectral imagery by
taking nearly continuous measurements over the vis-
ible, near infrared (IR)/middle IR regions of the spec-
trum at narrow intervals. The increased sensitivity
provided by the spectral resolution of hyperspectral
imagery allows unique spectral features associated
with crop condition to be identiÞed (Thenkabail et al.
2000, Govender et al. 2007). However, the improved
spectral resolution of hyperspectral imagery signiÞ-
cantly increases image dimensionality, data redun-
dancy, and Þle size. Spectral vegetation indices (SVI),
such as the normalized difference vegetation index
(NDVI) (Rouse et al. 1974, Tucker 1979), provide one
method of reducing multidimensional data acquired
from multiband or hyperspectral imagery to a single
value that can be used to qualitatively and quantita-
tively assess various crop vegetation parameters while
maintaining unique spectral information (Perry and
Lautenschlager 1984, Apan et al. 2004).

Conceptually, use of remote sensing to indirectly
evaluate crop condition is not new and beneÞts of
early detection of crop stress are obvious but examples
of its practical employment are limited. However, the
increasing number of ground, aerial and satellite based

sensors available for use, improved spatial and spectral
resolution of current sensors and integration of accu-
rate spatial information throughglobalpositioning sys-
tem (GPS) is making remote sensing more applicable
to agricultural science. Use of remote sensing to assess
crop parameters, such as nitrogen, iron, and phospho-
rous status (Daughtry et al. 2000, Osborne et al. 2002,
Zhao et al. 2003, Schlemmer et al. 2005), and biophys-
ical information, such as leaf area index (LAI) and
yield (Thenkabail et al. 2000, Calera et al. 2004,
Haboudane et al. 2004, Vina et al. 2004), are becoming
more common. Remote sensing also has been used in
agricultural insect pest management. Recent examples
include use of remotely sensed imagery to examine
cropÐinsect interactions at local and regional scales
(Brewster et al. 1999, Grilli 2006), investigate feeding
damage to winter wheat, by greenbug (Mirik et al.
2006), detect cotton aphid and spider mite damage to
cotton (Fitzgerald et al. 2004, Reisig and Godfrey
2006), examine chlorophyll loss from soybean aphid
feeding on soybean (Diaz-Montano et al. 2007), char-
acterize reßectance spectra of wheat infested with
Russian wheat aphid and greenbug (Riedell and
Blackmer 1999) and detect phylloxera-infested grape
vines (BlanchÞeld et al. 2006). Much of this research
was conducted using spectroradiometers with small
Þelds of view (FOV) of less than a meter or used
satellite imagery with coarse spatial resolutions, both
of which can limit their usefulness for insect pest
management in production agriculture. However,
these studies demonstrate the feasibility of using spec-
tral detection methods for identiÞcation of insect re-
lated plant stress.

Use of spectral information as an indicator of plant
stress requires an alteration of the plants reßectance
characteristics in visible light between 380- and
700-nm wavelengths and in the infrared at wave-
lengths between 700 and 2500 nm (Carter 1993). Phys-
ical invasion of corn stalks by O. nubilalis larvae dis-
rupts nutrient and water translocation within the corn
plant, increases incidence of stem rot diseases, such as
anthracnose(BergstromandNicholson1999), andcan
induce early senescence. Disruption of water and nu-
trient translocation inßuences plant pigment dynam-
ics and is well correlated with a plantÕs physiological
condition (Blackburn 2007). Leaf water content in-
ßuences light absorption by determining how light
interacts with wavelength independent factors, such
as internal leaf structures that are deÞned by the type
and number of cells present, and their distribution,
shape, and ultrastructure (Woolley 1971, Gausman
1977, Carter 1991). Changes in reßectance from dis-
ruption of water translocation are caused by increased
numbers of interfaces between wet cells and inter-
cellular air spaces that develop as water is lost from
plant tissues (Gausman and Cardenas 1969, Knipling
1970, Woolley 1971, Carter 1991). Typically, leaf water
content in most plants inßuences light reßectance at
wavelengths �1,000 nm (Carter 1991, Broge and Leb-
lanc 2000), but as Woolley (1971) cautioned when
explaining the inßuence of leaf water content on light
reßectance for soybean, Glycine max (L.) Merr., and
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corn leaves, the amount of change observed in the
intercellular spaces may depend on differences in me-
sophyll (i.e., monocots and dicots) and photosyn-
thetic capacity. O. nubilalis larvae feeding within the
plant stem should affect adaxial and abaxial surface
reßectance between 400 nm and 2,500 nm as a result
of decreased water content in plant tissues (Woolley
1971, Carter 1991) and be detectable by a hyperspec-
tral sensor. Additionally, yellowing and other visible
color changes associated with stressed or senescing
leaf tissue that results from chlorophyll degradation
unmasking secondary pigments such as carotenoids
and anthocyanins (Matile and Hortensteiner 1999)
also may be detectable.

The objective of this study was to determine
whether spectral vegetation indices using wave-
lengths sensitive to the plant pigments chlorophyll,
anthocyanin, and carotenoids, are able to distinguish
corn plots manually inoculated withO. nubilalis from
noninoculated control plots of corn. We discuss use of
pigment-based indices and their potential role in mon-
itoring for O. nubilalis resistance to Bt corn.

Materials and Methods

Experimental Plots. Experimental corn plots were
planted southwest of Ames, IA, on the Bennett farm in
2004 and Been farm in 2005 by using standard grower
practices for corn production. Nitrogen applied at 157
kg/ha in liquid 32% form was tank mixed with the
herbicide Acetochlor (2-chloro-N(ethoxymethyl)-6�-
ethyl-o-acetotoluidide) and applied to all plots in 2004
and 2005 before plant emergence. A postemergence
herbicide, Diglycolamine salt (3,6-dichloro-o-anisic
acid) was applied later in the season. Row spacing for
all plots in 2004 and 2005 was 76.2- at 19.1-cm plant
spacing. Individual plots were 4.6 m (four rows) by
18.3 m in 2004 but were increased to 9.1 m (12 rows)
by 18.3 m in 2005 to increase the number of picture
elements (pixels) available for image analysis. Inocu-
lation treatments were randomly assigned to plots of
DeKalb DKC57-01 Þeld corn by using a randomized
block design replicated Þve times in 2004 and 2005.
Inoculation of Corn Plants withO. nubilalis. Plants

were inoculated with O. nubilalis neonates (Guthrie
and Barry 1988) during V8-V10 growth stages on 24
and 25 June 2004 and 22 and 24 June 2005 to simulate
Þrst generation O. nubilalis and during R1, or R2
growth stages on 27 and 28 July 2004 and 22 July 2005
to simulate second generationO. nubilalis (Ritchie et
al. 1997). In 2004, three treatments were established
using 50 O. nubilalis neonates per plant for Þrst gen-
eration, 50 neonates per plant for second generation,
and plots with no inoculation to serve as a control. In
2005, an additionalO. nubilalis density of 25 neonates
every second plant, categorized as low, was added to
second generation O. nubilalis treatments. Four and
eight middle rows of treated plots were inoculated in
2004 and 2005, respectively.
Damage Assessment. Foliar feeding by Þrst gener-

ationO. nubilalis larvae was evaluated using the Guth-
rie rating scale on 8 July 2004 when plants were at

V12-V13 growth stage and 7 and 8 July 2005 at the
V9-V11 growth stage. The mean Guthrie rating for 10
total plants was calculated for each plot by arbitrarily
selecting Þve consecutive plants from each of the two
center rows and visually assessing leaf feeding on a 1Ð9
scale where one is no damage and nine is extensive
damage (Guthrie and Barry 1988). Stalk tunneling
damage by O. nubilalis was assessed at the end of the
growing season in 2004 and 2005 by arbitrarily select-
ing Þve consecutive plants from each of the two center
rows for dissection. Plants were dissected by vertically
splitting each stem along the length of the stalk with
a hawk billed grafting knife (pruner #1B, Camillus
Cutlery. Camillus, NY). Plants were individually eval-
uated for damage from O. nubilalis tunneling by enu-
merating number of entrance holes resulting in a tun-
nel �1 cm. Total number of cavities per plant were
recorded and converted to mean number of cavities
per 10 plants for a given treatment.
Hyperspectral Remote Sensing. Hyperspectral im-

ages of the experimental plots were acquired at 0.5-m
resolution by using a real-time data acquisition camera
system-hyperspectral (RDACS-H4) airborne camera
system modiÞed by ITD (Institute of Technology and
Development, Savoy, IL) mounted on a Zeiss T-A1
gyro-stabilized suspension system (Intergraph, Hunts-
ville, AL) in a Cessna 210 single engine Þxed wing
aircraft. Plots were imaged six times in 2004 on 12 July,
25 July, 9 August, 20 August, and 3 September and 17
September and Þve times in 2005 on 1 August, 17
August, 30 August, 10 September, and 26 September.
Spectral resolution of images consisted of 120 spectral
bands between 473 and 827 nm at 0.5-m2 spatial res-
olution for 2004 and 240 bands from 400 to 1000 nm at
0.5 m2 for 2005.

Before analysis hyperspectral imagery was prepro-
cessed to remove signal noise, calibrated to relative
reßectance, and then straightened and spatially reg-
istered to a real-world coordinate system. Preprocess-
ing was accomplished using ENVI 4.0 (ITT Visual
Information Solutions, Boulder, CO) to remove elec-
tronic noise by means of a minimum noise fraction
(MNF) rotation. The MNF procedure uses both raw
hyperspectral and dark current image data as inputs to
an algorithm similar to principal components analysis
to perform a two cascaded transformation on image
data to isolate signal noise.

Calibration of hyperspectral imagery to relative re-
ßectance was achieved using the following methods.
Seven 4.57-m2 gray scaled (black to white) calibration
tarps that varied in percent of reßectance from 2 to
83 � 1% were placed adjacent to the experimental
area. A GER 1500 spectroradiometer with a spectral
range of 350Ð1,050 nm at 1.5-nm bandwidth (Geo-
physical Environmental Research Corp., Millbrook,
NY) was used to acquire four scans over quadrants of
each tarp as close to the time of image acquisition as
was possible. After acquiring plot images, the empir-
ical line method (Smith and Milton 1999) in ENVI 4.0
was used to develop an equation for the relationship
between digital numbers recorded by the sensor for
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the calibration tarp and the “true” reßectance values
from spectroradiometer scans.

Before spatial registration of the imagery, a spatial
reference grid for the experimental plots was created
by placing 30 white painted 0.25-m2 wooden panels
midway between plots and at plot corners along the
exterior. Panels were georeferenced to centimeter
accuracy using a Trimble PathÞnder ProXRS GPS unit
(Trimble Navigation Limited, Sunnyvale, CA) and
digitally stored for later use.

Spatial registration of acquired images to real world
coordinates was accomplished using two methods.
Preliminary image rectiÞcation was conducted using
HYPER, a proprietary program developed by Institute
for Technology Development (ITD) (Stennis Space
Center, MS) that removes roll distortion in the imag-
ery caused by aircraft roll motion. Imagery was geo-
rectiÞed using ERDAS Imagine 8.7 (Leica Geosystems
Geospatial Imaging, LLC, Norcross, GA). Addition-
ally, hyperspectral imagery needed to be subset so that
pixels with mixed reßectance from between plots and
bordering areas would be excluded. Polygon shape-
Þles were created for each plot and used to deÞne
individual plot areas for export. Each hyperspectral im-
age was converted from image space to ASCII format by
using ERDAS ImagineÕs convert pixel to ASCII utility.

Eleven SVI that target plant pigments were selected
for evaluation in this study (Table 1) and were con-
sidered a representative subset of many SVI currently
available. Calculations for individual SVI (Table 1)
were performed in SAS by using the 2004 and 2005
exported hyperspectral imagery data of the Iowa ex-
perimental plots. In 2005, some wavelengths used in

SVI calculations differed from those used in 2004 by 1
to 2 nm due to the increased spectral resolution of the
2005 imagery, but this difference was considered neg-
ligible.
Analyses. All data sets were checked for normality

and homogeneity of variance using residual and nor-
mality plots before conducting analyses of variance
(ANOVA). In cases where assumptions were not met,
a log(y � c), square root(y � c) or y2 transformation
was sufÞcient to correct the issue, where c represents
a constant added to change values of y from negative
to positive.
O.nubilalisdamage levels in the plots were checked

to determine whether differences between inocula-
tion treatments were achieved. Mean Guthrie ratings
and mean number of O. nubilalis cavities per plant
were compared using a single factor ANOVA, Proc
Mixed of SAS 9.1.3 (SAS Institute, Cary, NC), at the
0.05 level of signiÞcance. A multiple comparison be-
tween 2005 second generation O. nubilalis high- and
low-inoculated treatments and noninoculated con-
trols for mean number ofO. nubilalis cavities per plant
was performed using the TukeyÐKramer method for
multiple comparisons (� � 0.05).

Comparison of mean spectral vegetation indices per
treatment for 2004 and 2005 Þrst and second genera-
tion infestations were analyzed with repeated mea-
sures ANOVA (Proc Mixed SAS 9.1.3) by using cal-
endar day of image acquisition to represent time
beginning at the Þrst imaging date after inoculation.
The default variance-component covariate structure
used by Proc Mixed (SAS 9.1.3) for analysis of time-
series data were not appropriate for imaging events

Table 1. Spectral vegetation indices used to differentiate 2004 and 2005 Iowa corn plots manually inoculated with O. nubilalis neonate
larvae

Index Abbreviation Equation Source

Normalized difference
vegetation index

NDVI R800 � R670

R800 � R670

Rouse et al. (1974)

Red edge position Red edge R670 � R780

2

Guyot and Baret (1988)

Pigment speciÞc simple ratio for
chlorophyll a

PSSRa R800

R680

Blackburn (1998)

Pigment speciÞc simple ratio for
chlorophyll b

PSSRb R800

R635

Blackburn (1998)

ModiÞed chlorophyll absorption
ratio index

MCARI
((R700 � R670) � 0.2 � (R700 � R550)) � �R700

R670
� Daughtry et al. (2000)

MCARI/OSAVI ratio MOSR ((R700 � R670) � 0.2 � (R700 � R550)) � �R700

R670
�

((R800 � R670) � 1)

((�R800 � R670) � 1)

Haboudane et al. (2002)

Anthocyanin reßectance index
(ARI)

ARI �R561
�1 � R706

�1) � R780 Gitelson and Merzlyak (2004)

Carotenoid reßectance index,
green wavelength

CRIgreen �R510
�1 � R561

�1) � R780 Gitelson and Merzlyak (2004)

Carotenoid reßectance index,
red wavelength

CRIred �R510
�1 � R706

�1) � R780 Gitelson and Merzlyak (2004)

Green model GM �R747

R549
�� 1

Gitelson et al. (2005)

Red model RM �R747

R700
�� 1

Gitelson et al. (2005)
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not equally spaced over time. However, temporal
measurements, such as imaging events, can be treated
as a one-dimensional spatial process. Consequently,
the spherical (power) spatial covariate structure was
used to model covariance between imaging events
acquired at different times (Littell et al. 1996). When
treatment-time interactions were signiÞcant, differ-
ences between mean SVI for O. nubilalis inoculated
treatments and noninoculated controls were exam-
ined by date (� � 0.05) by using least square means
(LS-means) in Proc Mixed (SAS 9.1.3). For multiple
comparisons, differences between mean SVI for dif-
ferent inoculated treatments and noninoculated con-
trols were examined using the adjusted LS-means pro-
vided by the TukeyÐKramer method for multiple
comparisons (� � 0.05) in Proc Mixed (SAS 9.1.3).

Results

Mean Guthrie ratings were found to be signiÞcantly
different between noninoculated controls and Þrst gen-
eration O. nubilalis inoculated plots in 2004 (F� 60.23;
df � 1, 4; P� 0.001) and 2005 (F� 10.47; df � 1, 4; P�
0.03) (Table 2). SigniÞcant differences also were found
between mean number ofO. nubilalis cavities per plant

(Table2) fornoninoculatedcontrolsandÞrst(F�16.71;
df � 1, 4; P� 0.02) and second (F� 222.9; df � 1, 4; P�
0.0001) generationO. nubilalis inoculated plots in 2004;
however, cavity numbers for 2005 (Table 2) Þrst gener-
ationO. nubilalis inoculated treatments were not signif-
icantly different from noninoculated controls (F� 5.43;
df � 1, 4; P � 0.08). Main treatment effect on mean
number of cavities per plant for 2005 second generation
O. nubilalis inoculation was signiÞcant (F� 63.95; df �
2, 8; P � 0.0001). However, only the high second gen-
eration O. nubilalis inoculation treatment was signiÞ-
cantly different from low inoculation (t � 8.41; df � 2,
8; P � 0.0001) and noninoculated controls (t � 10.76;
df � 2, 8; P � 0.0001) with no signiÞcant differences
between low inoculation treatments and noninoculated
controls (t� 2.35; df � 2, 8;P� 0.11) (Table 2). Overall,
manual inoculation of corn plants with neonate O. nu-
bilalis larvae to create plots with different levels of O.
nubilalis feeding damage was successful.

Eleven SVI were individually evaluated during the
growing season for their ability to detect plots of corn
manually inoculated withO.nubilalis in 2004 and 2005.
For 2004 Þrst generationO. nubilalis inoculated treat-
ments, no signiÞcant treatment main effects or time by
treatment interactions were detected (Tables 3 and 4)

Table 3. Repeated measures analysis of variance of spectral vegetation indices derived from hyperspectral imagery of O. nubilalis
first generation treated corn plots and noninoculated controls from 2004 and 2005 Iowa

Index

2004 Þrst generation O. nubilalis 2005 Þrst generation O. nubilalis

Treatment
(df � 1, 4)

Time
(df � 5, 48)

Treatment 	
time

(df � 5, 48)

Treatment
(df � 1, 4)

Time
(df � 4, 32)

Treatment 	
time

(df � 4, 32)

F P F P F P F P F P F P

ARI 0.06 0.820 591.42 �0.0001 1.39 0.2443 0.06 0.8253 830.35 �0.0001 2.88 0.0381
CRIgreen 0.00 0.9708 330.08 �0.0001 0.75 0.5893 7.99 0.0475 2550.95 �0.0001 0.34 0.8466
CRIred 0.08 0.7895 316.95 �0.0001 1.42 0.2346 3.53 0.1334 2233.18 �0.0001 0.51 0.7314
GM 0.05 0.8355 396.48 �0.0001 1.24 0.3056 3.64 0.1289 3138.93 �0.0001 2.35 0.0749
MCARI 0.00 1.0000 338.41 �0.0001 0.39 0.8560 0.29 0.6173 1815.26 �0.0001 1.28 0.2972
MOSR 0.01 0.9307 216.35 �0.0001 0.28 0.9241 0.25 0.6435 1247.10 �0.0001 1.02 0.4111
NDVI 0.03 0.8639 668.96 �0.0001 1.10 0.3752 4.94 0.0904 13738.0 �0.0001 5.58 0.0016
PSSRa 0.04 0.8564 488.93 �0.0001 1.28 0.2895 4.63 0.0978 11143.6 �0.0001 3.03 0.0317
PSSRb 0.02 0.9023 521.79 �0.0001 0.90 0.4875 4.38 0.1045 7548.76 �0.0001 4.02 0.0094
Red edge 0.28 0.6254 59.12 �0.0001 1.13 0.3573 10.03 0.0339 162.42 �0.0001 0.70 0.5998
RM 0.04 0.8590 201.77 �0.0001 1.12 0.3642 4.90 0.0912 5076.92 �0.0001 2.81 0.0416

Table 2. Mean number of O. nubilalis cavities per 10 plants from 2004 and 2005 Iowa corn plots manually inoculated with O. nubilalis
neonate larvae

Yr
O. nubilalis
generation

Treatment Inoculation rate
Mean Guthrie
rating � SE

Mean no.
cavities � SEa

2004 First Control 0 1.66 � 0.16a 0.02 � 0.004a
2004 First High 50 neonates/plant 3.48 � 0.17b 0.08 � 0.02b

2004 Second Control 0 0.02 � 0.004a
2004 Second High 50 neonates/plant 0.76 � 0.05b

2005 First Control 0 1.80 � 0.53a 0.02 � 0.01a
2005 First High 50 neonates/plant 4.11 � 0.48b 0.09 � 0.03a

2005 Second Control 0 0.02 � 0.01a
2005 Second Low 25 neonates every fourth plant 0.1 � 0.01a
2005 Second High 50 neonates/plant 0.4 � 0.03b

aMean number of cavities per 10 plants with the same letter for each year and generation are not statistically different at 0.05 level of
signiÞcance.
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for any SVI. In 2005, the SVI CRIgreen, and Red Edge
position index both had signiÞcant treatment main
effects, but neither index had signiÞcant treatment by
time interactions for Þrst generation inoculation treat-
ments (Table 3). Although most SVI for Þrst genera-
tion treatments during 2005 did not have signiÞcant
main effects several SVI, namely, ARI, NDVI, PSSRa,
PSSRb, and Red model had signiÞcant time by treat-
ment interactions (Table 3). These indices were able
to discriminate Þrst generation inoculated plots from
noninoculated controls with three of the SVI, PSSRa,
PSSRb and Red model, able to distinguish between
Þrst generation O. nubilalis inoculated plots on two
consecutive occasions (Table 5).

Plots inoculated with second generationO.nubilalis
were detected by more SVI than those inoculated with
Þrst generationO. nubilalis neonates. In 2004, 10 of 11
SVI for second generationO.nubilalis inoculated plots
had signiÞcant main treatment effects, and all had
signiÞcant treatment by time interactions (Table 6).
In contrast, six of 11 SVI had signiÞcant main effects
in 2005 (Table 6), with Þve of the six having signiÞcant
treatment by time interactions.

Further examination of the 2004 LS-means for SVI
with signiÞcant main treatment effects and treatment
by time interactions for second generationO.nubilalis
inoculated plots (Table 7) shows that mean values of
each SVI for control and treatment plots were similar
in August, 12 and 23 d after inoculation treatments
(DAT). By 3 September (37 DAT), mean SVI for
control plots were consistently higher than inoculated
plots. Similar trends were observed for 2005 LS-means
for six SVI (CRIgreen, GM, NDVI, PSSRa, PSSRb, and
RM) with signiÞcant main treatment effects and sig-
niÞcant treatment by time interactions (Table 8).
Mean SVI for control plots and inoculated plots were
not separable until 26 DAT when a signiÞcant differ-
ence was detected for RM between high infestationO.
nubilalis treatments and low infestation and nonin-
oculated controls. At 39 and 50 DAT, the six signiÞcant
SVI showed similar tendencies, with higher mean in-
dex values associated with control plots, likely caused
by greater plant vigor and biomass compared with
inoculated plots. SigniÞcant differences between high
O. nubilalis infestation treatments and low infestation
and noninoculated controls were observed at 39 and

Table 4. Mean spectral vegetation indices for O. nubilalis inoculation treatments and noninoculated control by time of image
acquisition for first generation O. nubilalis inoculated treatments from 2004 Iowa

Date
Days after
treatment

O. nubilalis
generation

Inoculation
treatment

ARI CRIgreen CRIred GM MCARI MOSR NDVI PSSRa PSSRb Red edge RM

12 July 17 First Control 1.62a �0.90a 1.70a 2.21a 6.58a 6.81a 0.73a 1.87a 2.53a 2.99a 1.04a
High 1.67a �0.95a 1.73a 2.26a 6.69a 6.90a 0.74a 1.92a 2.58a 3.03a 1.09a

25 July 30 First Control 1.25a �0.43a 1.52a 1.90a 5.78a 6.21a 0.68a 1.66a 2.07a 3.17a 0.97a
High 1.23a �0.42a 1.51a 1.88a 5.70a 6.16a 0.67a 1.64a 2.04a 3.15a 0.95a

9 Aug. 45 First Control 1.24a �0.52a 1.49a 1.88a 6.04a 6.48a 0.67a 1.61a 2.13a 3.10a 0.91a
High 1.23a �0.50a 1.48a 1.86a 6.02a 6.49a 0.66a 1.58a 2.10a 3.09a 0.89a

20 Aug. 56 First Control 1.30a �0.69a 1.50a 1.90a 6.82a 7.21a 0.68a 1.65a 2.13a 3.08a 0.81a
High 1.26a �0.65a 1.49a 1.86a 6.81a 7.25a 0.66a 1.60a 2.10a 3.08a 0.77a

3 Sept. 70 First Control 0.79a �0.15a 1.34a 1.52a 4.92a 5.87a 0.51a 1.14a 1.60a 3.05a 0.54a
High 0.75a �0.15a 1.32a 1.49a 4.85a 5.83a 0.50a 1.11a 1.57a 3.02a 0.52a

17 Sept. 84 First Control 0.32a 0.07a 1.20a 1.18a 2.57a 4.19a 0.27a 0.56a 0.79a 2.92a 0.21a
High 0.33a 0.06a 1.20a 1.19a 2.63a 4.22a 0.28a 0.57a 0.81a 2.90a 0.22a

SEM 0.04 0.05 0.02 0.03 0.15 0.13 0.02 0.04 0.04 0.02 0.04

Mean SVI with the same letter within each date are not statistically different at 0.05 level of signiÞcance.

Table 5. Mean spectral vegetation indices for O. nubilalis inoculation treatments and noninoculated control by time of image
acquisition for first generation O. nubilalis inoculated treatments from 2005 Iowa

Date
Days after
treatment

O. nubilalis
generation

Treatment ARI CRIgreen CRIred GM MCARI MOSR NDVI PSSRa PSSRb Red edge RM

1 Aug. 38 First Control 1.69a 1.27a 1.68a 1.70a 1.84a 2.90a 0.73a 2.66a 2.42a 3.11a 2.34a
High 1.69a 1.25a 1.67a 1.67a 1.85a 2.98a 0.73a 2.63a 2.40a 3.08a 2.30a

17 Aug. 54 First Control 1.64a 1.55a 1.96a 1.60aa 1.95a 3.62a 0.74a 2.60a 2.41a 2.95a 2.26a
High 1.66b 1.52a 1.95a 1.56aa 1.96a 3.80a 0.73a 2.54b 2.36b 2.91a 2.19b

30 Aug. 67 First Control 1.93a 0.51ab 1.35ac 1.39a 1.96a 4.38a 0.55a 1.85a 1.89a 2.86a 1.63a
High 1.92a 0.47ab 1.31ac 1.34b 1.95a 4.39a 0.52b 1.76b 1.81b 2.80b 1.56b

10 Sept. 78 First Control 1.95a 1.30a 1.98a 1.27a 2.78a 13.23a 0.70a 2.35a 2.07a 3.06a 1.58a
High 1.96a 1.27a 1.96a 1.25a 2.77a 13.14a 0.69a 2.31a 2.04a 3.04a 1.54a

26 Sept. 94 First Control 1.69a 0.46a 0.94a 0.65a 1.14a �0.80ad 0.10a 0.63a 0.74a 2.97a 0.64a
High 1.68a 0.45a 0.91a 0.63a 1.05b �1.60ad 0.09a 0.61a 0.72a 2.93b 0.64a

Standard error of mean 0.01 0.01 0.02 0.01 0.03 0.28 0.005 0.02 0.02 0.01 0.02

Mean SVI with the same letter within each date are not statistically different at 0.05 level of signiÞcance.
a Pr � t � 0.061.
b Pr � t � 0.055.
c Pr � t � 0.052.
d Pr � t � 0.052.
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50 DAT for the SVI GM, NDVI, PSSRa, PSSRb, and RM.
CRIgreen was the only nonchlorophyll based SVI of the
six but was able to distinguish differences between
high O. nubilalis treatments and noninoculated con-
trols once, at 50 DAT (Table 8) but was not clearly
separable from the low infestation treatment. At 66
DAT, NDVI was the only SVI of the six with detectable
differences between high O. nubilalis infestation
treatments and noninoculated controls. Although
MCARI and MOSR both were able to detect differ-
ences at 66 DAT among high O. nubilalis infestation
treatments, low infestation treatments, and noninocu-
lated controls, neither were able to do so earlier.

Discussion

Our results suggest that it may be possible to use SVI
derived from airborne hyperspectral imagery for de-
tection of plant stress caused by O. nubilalis larvae
feeding within corn stalks. SVI detection of plant stress
in our manually inoculated second generation O. nu-
bilalis plots seemed to peak 5Ð6 wk postinoculation
(Tables 7 and 8) Although none of the SVI examined
in this study detected Þrst generation infestation plots
in 2004, positive results for 2005 suggest the possibility
of early season detection ofO. nubilalis damage under
certain conditions.

Although damage to corn plants during the vege-
tativegrowthstagebyÞrst generationO.nubilalis stalk
tunneling can result in stunted plants with smaller and
fewer leaves, foliar feeding by O. nubilalis larvae that
is characterized by small holes and lesions in the leaf
tissue, would likely need to be signiÞcant to reduce
photosynthetic leaf area sufÞciently for detection by
an airborne sensor. It is plausible that stalk tunneling
by multiple larvae or a combination of stalk tunneling
and inadequate water availability during the vegeta-
tive growth stage will increase the rate at which a plant
senesces, making it possible to detect damage by Þrst
generation O. nubilalis larvae late in the season using
airborne remote sensed imagery. However, it will
likely be difÞcult to consistently detect early seasonO.
nubilalis damage every year as evidenced by only a
single year of positive results. Furthermore, the rate of
plant senescence for plants stressed by O. nubilalis
feeding would likely be intensiÞed through interac-
tion with other stressors such as drought, disease or
additional insect damage.

Based on the positive results for the chlorophyll-
based SVI (GM, NDVI, PSSRa, PSSRb, and RM) at
detecting second generation O. nubilalis injury, we
propose that the improved spectral and spatial reso-
lution provided by airborne hyperspectral remote
sensing is especially effective for detecting changes in

Table 6. Repeated measures analysis of variance of spectral vegetation indices derived from hyperspectral imagery of O. nubilalis
second generation treated corn plots and noninoculated controls from 2004 and 2005 Iowa

Index

2004 second generation O. nubilalis 2005 second generation O. nubilalis

Treatment
(df � 1, 4)

Time
(df � 3, 32)

Treatment 	 time
(df � 3, 32)

Treatment
(df � 2, 4)

Time
(df � 4, 48)

Treatment 	
time

(df � 8, 48)

F P F P F P F P F P F P

ARI 34.61 0.0042 2185.55 �0.0001 105.62 �0.0001 0.69 0.5541 1191.59 �0.0001 2.80 0.0124
CRIgreen 6.62 0.0618 1550.48 �0.0001 31.97 �0.0001 9.53 0.0301 4079.31 �0.0001 1.43 0.2100
CRIred 58.55 0.0016 1575.21 �0.0001 114.11 �0.0001 5.26 0.0758 2556.71 �0.0001 1.09 0.3844
GM 29.25 0.0057 2240.58 �0.0001 115.12 �0.0001 17.15 0.0109 5881.57 �0.0001 11.38 �0.0001
MCARI 47.71 0.0023 1192.63 �0.0001 91.16 �0.0001 0.82 0.4946 6923.21 �0.0001 5.47 �0.0001
MOSR 68.02 0.0012 743.32 �0.0001 80.12 �0.0001 1.39 0.3482 2201.31 �0.0001 9.88 �0.0001
NDVI 18.06 0.0132 1529.20 �0.0001 86.99 �0.0001 27.13 0.0047 18156.8 �0.0001 27.50 �0.0001
PSSRa 16.35 0.0156 1896.52 �0.0001 102.45 �0.0001 23.00 0.0064 11767.10 �0.0001 14.86 �0.0001
PSSRb 26.79 0.0066 1722.84 �0.0001 114.74 �0.0001 24.40 0.0057 9969.61 �0.0001 18.82 �0.0001
Red edge 210.83 0.0001 382.93 �0.0001 97.47 �0.0001 4.35 0.0992 259.89 �0.0001 2.29 0.0367
RM 9.83 0.0350 2008.51 �0.0001 89.55 �0.0001 23.31 0.0062 8902.68 �0.0001 15.59 �0.0001

Table 7. Mean spectral vegetation indices for O. nubilalis inoculation treatments and noninoculated control by time of image
acquisition for second generation O. nubilalis inoculated treatments from 2004 Iowa

Date
Days after
treatment

O. nubilalis
generation

Treatment ARI CRIgreen CRIred GM MCARI MOSR NDVI PSSRa PSSRb Red edge RM

9 Aug. 12 Second Control 1.88a 1.56a 0.96a 1.90a 6.04a 3.73a 0.51a 1.61a 2.13a 2.95a 0.95a
High 1.89a 1.55a 0.97a 1.92a 5.95a 3.70a 0.52a 1.65a 2.15a 2.96a 0.98a

20 Aug. 23 Second Control 1.93a 1.50a 0.97a 1.93a 6.82a 3.95a 0.52a 1.65a 2.13a 2.93a 0.90a
High 1.92a 1.51a 0.96a 1.91a 6.63a 3.90a 0.51a 1.63a 2.10a 2.93a 0.90a

3 Sept. 37 Second Control 1.51b 1.67a 0.69b 1.55b 4.92b 3.54b 0.41b 1.14b 1.60b 2.89b 0.73a
High 1.23a 1.72b 0.39a 1.29a 2.83a 2.78a 0.30a 0.75a 1.04a 2.61a 0.59b

17 Sept. 51 Second Control 1.20b 1.74a 0.39b 1.22b 2.57b 2.86b 0.24b 0.55b 0.79b 2.74b 0.45b
High 1.07a 1.73a 0.16a 1.09a 1.47a 2.19a 0.17a 0.37a 0.49a 2.43a 0.38a

SEM 0.01 0.004 0.01 0.01 0.11 0.04 0.01 0.02 0.02 0.02 0.01

Mean SVI with the same letter within each date are not statistically different at 0.05 level of signiÞcance.
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chlorophyll content caused by plant stress from feeding
O. nubilalis larvae. In contrast, the SVI (ARI, CRIgreen,
andCRIred) that focused on anthocyanin or carotenoid
pigments for detection of O. nubilalis feeding stress
were not as effective. One likely reason may be that
chlorophyll is the primary pigment that determines
the amount of light a plant absorbs, and degradation of
chlorophyll through catabolism during senescence
(Matile and Hortensteiner 1999), or as a result of some
other stressor, is an obvious sign of plant health and
easily detectable by spectral methods. Plant stress is
clearly reßected by changes in chlorophyll concen-
tration, although these changes may be small and may,
initially, not be detectable (Blackburn 1998). Until
chlorophyll is sufÞciently degraded in the leaf, the
expression of carotenoid and anthocyanin pigments is
masked making detection of either difÞcult. However,
this does not mean anthocyanins and carotenes cannot
provide complementary spectral information that may
be unique to plants stressed by insect feeding (Black-
burn 1998).

Ancillary information, such as spatial heterogeneity
of plant pigments, temporal heterogeneity of plant
pigment expression and catabolism, canopy structure,
and soil type, can provide additional information on
individual stressors that may allow insect-related plant
stress to be distinguished from nutrient deÞciency or
disease by remote sensing (GopalaPillai and Tian 1999,
Baret et al. 2007, Blackburn 2007). Additionally, spatial
heterogeneity of plants exhibiting different plant pig-
ment concentrations over time can help distinguish
larger environmental stresses, such as drought, from
insect pest or disease stress that initially impact local-
ized areas of a Þeld and may be temporally limited.

This research was conducted on corn plots of same
phenology, and were they managed to minimize the
physiological response of the plant to other potential
stressors, such as nutrient deÞciency and weeds. We
acknowledge that use of hyperspectral imagery to
detect plant stress caused by larval O. nubilalis in

larger cornÞelds may be more difÞcult given the in-
herent variability of production sized Þelds especially
if there are in-Þeld differences in soil type (Chance
1977, Curran 1985). However, to our knowledge, high
spectral and spatial resolution airborne hyperspectral
imagery has not been previously used to detect plant
stress caused by insect feeding in production corn
Þelds. Unlike imagery acquired by boom mounted or
handheld spectroradiometers that are limited by a
smallFOVanddonot typicallyprovidedetailed spatial
information, airborne hyperspectral imagery is scal-
able and can provide georeferenced imagery at sub-
meter resolution.

Five of the spectral vegetation indices (GM, NDVI,
PSSRa, PSSRb, and RM) used in this study provided
consistent, functionally equivalent, results for second
generationO. nubilalis in 2004 and 2005. In particular,
the NDVI and RM distinguished plots inoculated with
second generation O. nubilalis more frequently than
the other SVI. We suggest that for the purpose of
identifying plant stress associated with larval O. nu-
bilalis feeding in transgenic Þelds that multiple SVI
targeting different aspects of the crop be used to avoid
overreliance on a single physiological state. Funda-
mentally, SVI are designed to minimize variation from
nondesired factors and maximize sensitivity to a factor
of interest (Daughtry et al. 2000). New SVI for corn
that may be developed for this purpose should be
sensitive to foliage parameters, such as density, but
should not be signiÞcantly inßuenced by other factors,
such as soil and atmosphere (Gilabert et al. 1996).
However, any crop speciÞc SVI would need to be
ßexible to account for spectral variation among hy-
brids.

Current demand for corn in the United States has
led to signiÞcantly higher corn prices and is expected
to contribute to increases in planted acreages of trans-
genic corn. These added plantings increases the pos-
sibility of insect pests developing resistance to Bt corn
and emphasizes the need for a detection method ca-

Table 8. Mean spectral vegetation indices for O. nubilalis inoculation treatments and noninoculated control by time of image
acquisition for second generation O. nubilalis inoculated treatments from 2005 Iowa

Image
acquisition

date

Days after
treatment

O. nubilalis
generation

Treatment ARI CRIgreen CRIred GM MCARI MOSR NDVI PSSRa PSSRb Red edge RM

1 Aug. 10 Second Control 1.67a 1.27a 1.40a 1.70a 2.52a 3.78a 0.73a 2.72a 2.51a 3.11a 2.34a
Low 1.66a 1.27a 1.40a 1.70a 2.50a 3.76a 0.73a 2.72a 2.51a 3.11a 2.35a
High 1.66a 1.26a 1.39a 1.69a 2.54a 3.79a 0.74a 2.72a 2.51a 3.12a 2.34a

17 Aug. 26 Second Control 1.61a 1.56a 1.62a 1.60a 2.66a 3.87a 0.74a 2.67a 2.50a 2.95a 2.26b
Low 1.61a 1.54a 1.61a 1.59a 2.64a 3.86a 0.74a 2.65a 2.48a 2.94a 2.25b
High 1.64a 1.52a 1.60a 1.55a 2.72a 3.92a 0.73a 2.61a 2.45a 2.94a 2.18a

30 Aug. 39 Second Control 1.91a 0.52a 1.12a 1.40b 2.69a 3.97a 0.55b 1.99b 2.03b 2.86b 1.63b
Low 1.91a 0.51a 1.11a 1.38b 2.66a 3.96a 0.54b 1.97b 2.00b 2.84ab 1.61b
High 1.89a 0.45a 1.04a 1.27a 2.67a 4.00a 0.47a 1.80a 1.84a 2.77a 1.44a

10 Sept. 50 Second Control 1.94a 1.30b 1.64a 1.27b 4.04a 4.96a 0.70b 2.44b 2.19b 3.06a 1.58b
Low 1.94a 1.28ab 1.62a 1.26b 4.03a 4.96a 0.70b 2.42b 2.18b 3.05a 1.56b
High 1.93a 1.21a 1.57a 1.19a 4.01a 4.99a 0.66a 2.29a 2.07a 3.01a 1.43a

26 Sept. 66 Second Control 1.67a 0.47a 0.75a 0.65a 1.81b 3.22b 0.10b 1.06a 1.13a 2.97a 0.64a
Low 1.67a 0.46a 0.74a 0.64a 1.75b 3.14b 0.09ab 1.05a 1.12a 2.94a 0.64a
High 1.66a 0.44a 0.71a 0.60a 1.60a 2.84a 0.08a 1.01a 1.09a 2.89a 0.60a

SEM 0.01 0.02 0.02 0.01 0.03 0.03 0.005 0.01 0.01 0.02 0.01

Mean SVI with the same letter within each date are not statistically different at 0.05 level of signiÞcance.
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pable of identifying insect related stress in corn. We
believe that this study provides evidence that SVI
derived from airborne hyperspectral imagery can be
used to detect plant stress resulting from larval O.
nubilalis feeding damage and that this method may
provide a means of detecting resistant populations of
O. nubilalis in production sized Bt corn Þelds and
should be evaluated further.
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